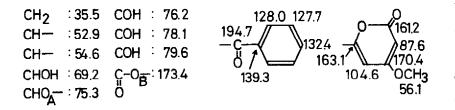
UTILIZATION OF ¹³C-¹³C COUPLING IN STRUCTURAL AND BIOSYNTHETIC STUDIES. VII ¹) THE STRUCTURE AND BIOSYNTHESIS OF VULGAMYCIN.

Haruo Seto*, Tsutomu Sato, Shiro Urano⁺, Jun Uzawa⁺⁺, and Hiroshi Yonehara Institute of Applied Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo, 113

+ Tokyo Metropolitan Institute of Gerontology, Itabashi-ku, Tokyo

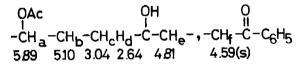
++ Institute of Physical and Chemical Research, Wako-shi, Saitama, Japan

(Received in Japan 25 September 1976; received in UK for publication 12 October 1976)


Vulgamycin is an antibiotic produced by *Streptomyces hygroscopicus* No A-5294²) and is active against gram negative bacteria. The antibiotic has been proved to be identical with enterocin recently reported by Miyairi et al.³)

We wish to report the structural and biosynthetic studies of vulgamycin, the result of which is summarized in Fig. 1.

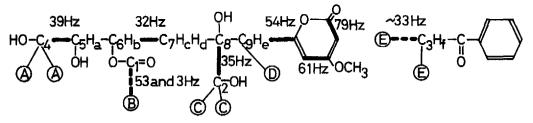
Vulgamycin <u>I</u>, $C_{22}H_{20}O_{10}(M^{+} m/e, found: 444.1058, calcd: 444.1055), m.p. 166-168°C, <math>[\alpha]_{D}^{21}$ -11° (c l, MeOH), λ_{max}^{MeOH} 250nm(ϵ 16900) and 283(11100), gave a diacetate <u>II</u>, $C_{26}H_{24}O_{12}(M^{+} m/e, 528)$, on acetylation with acetic anhydride/pyridine and a dihydro derivative <u>III</u>, $C_{22}H_{22}O_{10}(M^{+} m/e, 446)$ on reduction with NaBH₄.


The ¹H-nmr spectrum of \underline{I} (d₆-DMSO, 100MHz) showed the presence of three tertiary alcohols ($\delta_{\rm H}^{\rm TMS}$ 5.46,s, 5.85,s, and 5.90,s), one secondary alcohol(5.65,d,J=5.5Hz), mono-substituted benzene (7.45-7.85,5H,m), two *meta* coupled heteroaromatic protons(5.61,d, and 6.29,d,J=2.3Hz), a methyl-ene(1.68,bd, and 2.27,bd, J_{gem} =14.4Hz), a methoxy(3.87,3H,s) and four protons(~4.47,2H,m, and ~4.66,2H,m), one of which(4.47) was coupled to the secondary hydroxy proton.

The ¹³C-nmr spectrum of \underline{I} (δ_C^{TMS} , ds-DMSO, 25.05MHz) and known chemical shifts of acetophenone⁴) and 4-methoxy-2-pyrones⁵), together with the information described above revealed the following functionalities. The molecular formula of \underline{I} indicated the identity of O_A and O_B and

the presence of additional three ring structures. The spin decoupling experiments on <u>II</u> in CDCl₃ showed the 4368

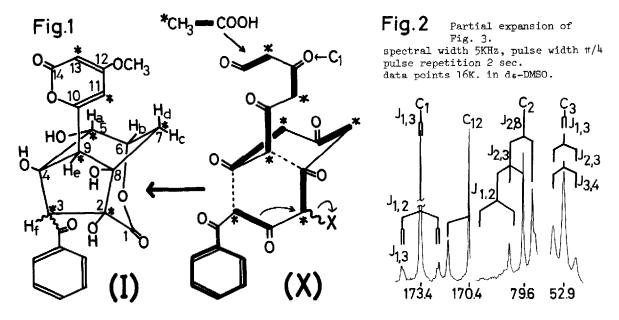
following partial structures. Since $H_e(J=2.5Hz)$ was coupled to only one proton (H_c) of the


 $\begin{array}{c|c} OAc & OH & O & \text{methylene and not to the other } (H_d), H_e \text{ and } H_c \\ I & -CH_a - CH_b - CH_cH_d - C - CH_e - , -CH_f - C - C_6H_5 \end{array}$ must be in a 1,3-diequatorial relationship⁶) (W-form long range coupling) connected by a

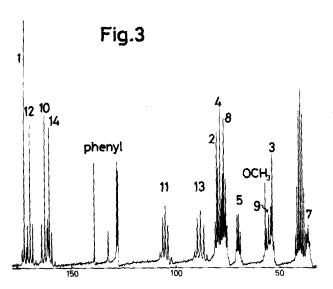
quartery hydroxylated carbon. In the ¹H-nmr spectrum of a NaBH4 reduction product III, Hf which had appeared as a sharp singlet (4.59) in <u>II</u>, changed to a doublet (d₅-pyridine, 4.15, J=7.5Hz) coupled to a newly appeared doublet (6.02, J=7.5Hz). Thus, the relation $-CH_{e-C}(=0)-C_{eH_{5}}$ was established.

In the above partial structures, one of three methines (CH_b , CH_e and CH_f) remained to be oxygenated. The ¹³C-nmr selective proton decoupling experiments on I taken in d5-pyridine showed clearly CH_b to be an oxygenated one (δ_{C}^{TMS} CH_b 77.0, CH_e 54.1 and CH_f 56.2). The carbon chemical shift of CH_e is reasonably explained by binding the pyrone system to this carbon; in supporting this explanation, the long range coupling between H_e and H_g of the pyrone (J=1.0Hz) was confirmed by spin decoupling experiments on methyl vulgamycinate triacetate $C_{29}H_{28}O_{13}(M^+-H_2O_m/e, 584)$ which was prepared by mild alkaline hydrolysis of I followed by acetylation and methylation. Therefore, the partial structure was extended as shown below.

At this point, we turned to the use of the double labeling method⁷) which utilizes ¹³C-¹³C coupling in H_{2} structural elucidation. As expected, the ¹³C-nmr


spectrum of I (Fig. 3) labeled with ¹³CH₃¹³COO Na (without dilution of unlabeled acetate) showed several pairs of $^{13}C_{-}^{13}C$ coupling which could be accommodated in the following partial structures representing all carbons of I.

The magnitude of the coupling constants of $-O-C_1=O$ and $-C_3H_{f}-$ (shown by===) did not match to any other coupling constants observed. This phenomenon was believed to be caused by the coupling between different acetic acid molecules(vide infra).


In connecting the unpaired bonds A-E, the following combinations had to be excluded based on the reasons given below. (i) A-C. I consumed 2 moles of periodate. (ii) C-D. The combination of C and D would form a cyclopropane ring. However, the coupling constant $(J_{2,9}=35Hz)$ is too large in magnitude as found for cyclopropane rings⁸) (J=10-17Hz). (iii) D-E. H_e and H_f were not coupled to each other. (iv) A=C, C=E, or A=E. The ¹³C-nmr spectral data showed that C₂, C₃ and C₄ are sp^3 carbons.

In addition to the above limitations, the ${}^{13}C_{-}{}^{13}C$ coupling observed between $C_2(OH)$ and $C_{3}H_{f}(J_{2,3}=3^{1}Hz)$ in the ${}^{13}C_{-}nmr$ spectrum of <u>I</u> derived from ${}^{13}CH_{3}COONa$ imposed the direct combination of these two carbons, leaving only one possible combination (A-D, A-E, B-C, and C-E) to give the structure as shown in Fig. 1. The W-form long range coupling observed between H_{e} and H_{c} , and not between H_{a} and H_{e} or H_{c} required H_{e} to be in an equatorial and H_{g} in an axial orientation.

In the ¹³C-nmr spectrum of \underline{I} derived from ¹³CH₃¹³COONa, the intensity of satellite peaks of C₁ and C₃ is considerably weaker than those in similar environments, indicating that the observed satellites were due to the coupling between different acetic acid molecules. Actually the satellite peaks of only C₁ and C₃ disappeared in the ¹³C-nmr spectrum of \underline{I} labeled with ¹³CH₃¹³COONa diluted three times with unlabeled acetate. The expanded spectrum together with the expected splitting pattern for C₁ and C₃, as well as C₂ which should be coupled to C₁ and C₃ is shown in Fig. 2. It should be noted in Fig. 2 that the satellite peaks of C₁ were further splitted to a doublet (J=3Hz) without being accompanied by a central peak. This pattern can only be explained by assuming that C₁ and C₃ in a biosynthetic intermediate (X in Fig. 1) was cleaved

during a biosynthetic process probably through a Favorskii type rearrangement. Similar precedents have been observed in the biosynthesis of a pyrone^{9,10}) and sterigmatocystin¹⁰). The satellite peaks with small $^{13}C_{-}^{13}C$ coupling expected to appear on both sides of the C₁ central peak were obscured by the overlapping of the strong C_1 peak simply resulting in the line broadening.

Two separate experiments using ¹³CH₃COONa and CH₃¹³COONa indicated that carbons 2, 3, 5, 7, 9, 11 and 13 derived from the former and that carbons 1, 4, 6, 8, 10, 12 and 14 from the latter. Uniformally ¹⁴C-labeled benzoate (1 µCi) was incorporated efficiently and selectively into the benzoyl portion of I (incorporation 4.4%, location of the radioactivity 69%). The incorporation of [CD3]-methionine into the methoxy group of the pyrone moiety was disclosed by mass spectrometry. Thus I is

biosynthesized from methionine and seven acetate units with benzoate as the starter (Fig. 1).

Recently Miyairi has informed us that the absolute configuration of <u>I</u> (enterocin) was determined by an X-ray analysis as shown with S-configuration at C_3^{11}

Acknowlegement This work was supported by a grant from the Ministry of Education, the Government of Japan. We thank Dr. N. Miyairi for informing us of the structure of enterocin prior to publication and Dr. M. Tanabe for helpful discussion. We also thank Kaken Chemical Co. for a sample of vulgamycin and a vulgamycin producing organism.

REFERENCES AND FOOTNOTES

- 1) For part VI. see H. Seto and S. Urano, Agr. Biol. Chem. <u>39</u>, 915 (1975).
- 2) S. Aizawa, H. Sugawara, S. Niigae, H. Akutsu, C. Hirose, Y. Kusakabe and A. Seino,
- Abstract of Agricultural Chemical Society. 1975. p. 83. Sapporo, Japan.
- 3) N. Miyairi, H. Sakai, T. Konomi and H. Imanaka, J. Antibiotics. 29, 227 (1976).
- 4) L.F.Johnson and W.C.Jankowski, "Carbon-13 NMR Spectra", Wiley-Interscience, New York, 1972. 5) W. V. Turner and W. H. Pirkle, J. Org. Chem. <u>95</u>, 1935 (1974). K. Tori, T. Hirata, O. Koshitani and T. Suga, Tetrahedron Lett. 1976, 1311.
- 6) An alternative structure $-CH_eH_d$ - CH_e- , where the dihedral angle of H_d and H_e is equal or close to 90°, was excluded based on the calculated coupling constant (J=6.8Hz) between H_c and H_e.
- 7) H. Seto, T. Sato and H. Yonehara, J. Amer. Chem. Soc. <u>95</u>, 8461 (1973), H. Seto, T. Satō and H. Yonehara, Agr. Biol. Chem. <u>39</u>, 1667 (1975)
- 8) J. B. Stothers, "Carbon-13 NMR Spectroscopy" p. 370, Academic Press, New York, 1972.
- 9) T. J. Simpson and J. S. E. Holker, Tetrahedron Lett. 1975, 4693.
- 10) M. Tanabe, M. Uramoto, T. Hamasaki and L. W. Cary, Heterocycles. in press
- 11) Y. Tokuma, N. Miyairi and Y. Morimoto, J. Antibiotics. 29, in press